首页关于本刊影响因子及获奖投稿须知订阅及广告专辑与专题学术会议绿色发表通道优秀论文 
说明:
此论文已被《生态学报》录用,现已优先出版,可查看文章PDF版本!
井然,宫兆宁,赵文吉,邓磊,阿多,孙伟东.基于无人机SfM数据的挺水植物生物量反演.生态学报,2017,(22).http://dx.doi.org/10.5846/stxb201609221908  
基于无人机SfM数据的挺水植物生物量反演
Estimating Biomass of Emergent Aquatic Plants Based on UAV SfM Data
投稿时间:2016-09-22  最后修改时间:2017-06-13
DOI: 10.5846/stxb201609221908
关键词挺水植物  生物量  无人机影像  SfM数据  回归分析
Key Wordsemergent plants  biomass  UAV data  SfM data  regression analysis
基金项目国家国际科技合作专项资助(2014DFA21620)
作者单位E-mail
井然 首都师范大学 15911157479@163.com 
宫兆宁 首都师范大学  
赵文吉 首都师范大学 zhwenji1215@163.com 
邓磊 首都师范大学  
阿多 首都师范大学  
孙伟东 首都师范大学  
摘要点击次数 46
全文下载次数 10
摘要:
生物量(Biomass)是衡量挺水植物生长状况的重要参数,对湿地生态系统健康评价具有重要意义。本文利用无人机影像生成SfM(Structure from Motion,SfM)数据,结合野外实测生物量构建定量反演模型,并根据反演模型对生物量进行空间制图,最后分析了挺水植物类型对生物量空间分布的影响。结果表明,文中基于SfM数据建立的逐步线性回归模型(Stepwise Linear (SWL) regression model)具有较好的反演精度及估测能力。其模型显著性为显著(p<0.01),决定系数为0.86,相对均方根误差为6.1%。挺水植物类型对生物量空间分布影响显著(p<0.05)。通过对研究区挺水植物的生物量进行估算,为利用无人机遥感监测挺水植物生物量提供了新思路。
Abstract:
Biomass is an important ecological parameter that is used to evaluate the growth condition of emergent plants in wetlands during ecosystem health assessments. This study used SfM data generated from UAV images and field measurements of emergent plant biomass to establish a quantitative relationship between the SfM data and biomass, which was then used to map biomass in the study area. The influence of emergent plant types on the spatial distribution of biomass was analyzed. Our results show that a Stepwise Linear regression (SWL) model based on the SfM data had the best forecasting accuracy and ability (p<0.01), with a coefficient of determination (R2) of 0.86 and an rRMSE of 6.1%. Emergent plant types had a significant influence (p<0.05) on the spatial distribution of biomass in the study area. The results of this study provide a new quantitative method for retrieving growth parameters for emergent aquatic plants.
HTML 查看全文   查看/发表评论  下载PDF阅读器

您是本站第 60634657 位访问者

Copyright © 2005-2019   京ICP备06018880号
地址:北京海淀区双清路18号
  邮编:100085    电话:010-62941099
  E-mail : shengtaixuebao@rcees.ac.cn
本系统由北京勤云科技发展有限公司提供技术支持