首页关于本刊影响因子及获奖投稿须知订阅及广告专辑与专题学术会议绿色发表通道优秀论文 
说明:
此论文已被《生态学报》录用,现已优先出版,可查看文章PDF版本!
车宗玺,李进军,汪有奎,丁国民,李世霞,邸华,车宗彩,潘欣,毛志明.祁连山西段草地土壤温度、水分变化特征研究.生态学报,2018,(1).http://dx.doi.org/10.5846/stxb201612292695  
祁连山西段草地土壤温度、水分变化特征研究
Characteristics of soil temperature and water content variation in the western Qilian mountains
投稿时间:2016-12-29  修订日期:2017-07-28
DOI: 10.5846/stxb201612292695
关键词土壤温度、水分  变化特征  草地  祁连山西段
Key Wordssoil temperature  soil water content  grassland  Qilian mountains
基金项目国家自然科学“祁连山土壤氮矿化特征及分异规律研究(31260141)与甘肃省科技支撑计划项目“祁连山典型生态系统物质循环及其对气候变化的响应(1604FKCG117)”联合资助。
作者单位E-mail
车宗玺 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖 chezongxi@126.com 
李进军 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
汪有奎 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
丁国民 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
李世霞 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
邸华 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
车宗彩 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
潘欣 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖 chezongxi@126.com 
毛志明 1.甘肃祁连山国家级自然保护区管理局 邮编734000 甘肃张掖  
摘要点击次数 63
全文下载次数 12
摘要:
研究土壤水热要素对合理预测祁连山气候变化特征及建立气候预警系统有重要意义。采用18套土壤温、湿度自动记录仪(HOBOU30)对祁连山西段草地进行3a长期连续定位监测,旨在探索分析该区土壤水热变化特征,阐明土壤水热互作效应及耦合机制。表明:1)冷期(1—3、11—12月)占全年的42%,暖期(4—10月)占58%;7月前土壤均温随月份增大而增大,月份增大1月土壤均温增大3.53℃,水分增大3.23%;7月后随月份增大而减小,月份增大1月土壤均温降低4.73℃,水分下降2.55%。2)日变化16:00前土壤均温为7.45℃,水分为16.26%,16:00后均温为9.1℃,水分为16.79%,16:00后比前均温高1.65℃,水分高0.54%。3)土温、水分与海拔均呈线性正相关,前者差异显著 (P<0.05),后者不显著(P>0.05)。4)土温逐层(0—120 cm)平均递增0.07℃,水分递减0.58%;土温与土层深度呈显著线性正相关(P<0.05,R2=0.99),水分呈显著线性负相关(P<0.05,R2=0.97)。5)该区土温与水分呈显著线性负相关。因此,祁连山西段草地土温变幅较小,水分变幅大,两者在空间上变化均呈二次函数,时间上均呈一次函数。
Abstract:
It is important to study the characteristics of soil water and heat to reasonably predict climate change effects and to establish an early climate warning system for the Qilian Mountains. In this study, 18 soil temperature and humidity dataloggers (HOBOU30) were used to monitor a grassland over a continuous three-year period in the western Qilian Mountains. Our aim was to explore the characteristics of soil water and heat exchange in this area and to clarify the soil water-heat interaction effect and coupling mechanism. The results showed that 1) the cold period (November to March) accounted for 42% of the year and the warm period (April to October) for 58%. As time passed, average soil temperature and water content increased monthly by 3.53°C and 3.23%, respectively, before July and decreased monthly by 4.73°C and 2.55%, respectively, after July. 2) Average daily soil temperature and water content were 6.45°C and 16.26%, respectively, before 16:00, and 9.1°C and 16.79%, respectively, after 16:00; thus, these values were 1.65°C and 0.54% higher after 16:00 than they were before. 3) Soil temperature (P < 0.05) and water content (P > 0.05) were linearly positively correlated with altitude. 4) As soil depth increased (0-120 cm), average soil temperature increased by 0.07°C for each soil depth, and average soil water content decreased by 0.58% for each soil depth. Soil temperature and soil depth were significantly positively linearly correlated (P < 0.05, R2 = 0.99), and water content and soil depth were significantly negatively linearly correlated (P < 0.05, R2 = 0.97). 5) Soil temperature and soil water content were negatively correlated. Therefore, the western Qilian Mountains exhibited small variation in soil temperature and large variation in water content, and both soil temperature and soil water content had a quadratic relationship with spatial variation and a linear relationship with temporal variation.
HTML 查看全文   查看/发表评论  下载PDF阅读器

您是本站第 64440955 位访问者

Copyright © 2005-2019   京ICP备06018880号
地址:北京海淀区双清路18号
  邮编:100085    电话:010-62941099
  E-mail : shengtaixuebao@rcees.ac.cn
本系统由北京勤云科技发展有限公司提供技术支持