首页关于本刊影响因子及获奖投稿须知订阅及广告专辑与专题学术会议绿色发表通道优秀论文 
周正虎,王传宽.帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征.生态学报,2017,37(7):2428~2436 本文二维码信息
二维码(扫一下试试看!)
帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征
Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region
投稿时间:2015-12-24  最后修改时间:2016-07-19
DOI: 10.5846/stxb201512242569
关键词化学计量  碳矿化  氮矿化  土壤微生物  土地利用变化
Key Wordsstoichiometry  carbon mineralization  nitrogen mineralization  soil microbe  land use change
基金项目教育部长江学者和创新团队发展计划(IRT_15R09);国家"十二五"科技支撑项目(2011BAD37B01);中央高校基本科研业务费专项资金资助项目(2572016AA08)
作者单位E-mail
周正虎 东北林业大学生态研究中心, 哈尔滨 150040  
王传宽 东北林业大学生态研究中心, 哈尔滨 150040 wangck-cf@nefu.edu.cn 
摘要点击次数 136
全文下载次数 65
摘要:
土地利用方式的变化导致土壤碳氮含量及其化学计量关系的变化,然而土壤微生物化学计量及其驱动的碳氮矿化过程如何响应这种变化仍不明确。以帽儿山地区天然落叶阔叶林、人工红松林、草地和农田4种不同土地利用类型为对象,测定其土壤有机碳(Csoil)、全氮(Nsoil)、微生物生物量碳和氮(Cmic和Nmic)、土壤碳和氮矿化速率(Cmin和Nmin),旨在比较不同土地利用方式对土壤、微生物碳氮化学计量特征及矿化速率的影响,探索土壤-微生物-矿化之间碳氮化学计量特征的相关性,揭示微生物对土壤碳氮化学计量变化的响应和调控机制。结果显示:Csoil、Nsoil、Cmic、Nmic和Cmin均呈现天然落叶阔叶林>人工红松林>草地>农田,而天然落叶阔叶林和草地的Nmin显著高于人工红松林和农田。土地利用方式显著影响土壤和微生物碳氮比(C:Nsoil和C:Nmic),均呈现农田最高。不同土地利用方式的数据综合分析发现:碳氮矿化速率比与C:Nmic呈负相关,而和微生物与土壤碳氮化学计量不平衡性(C:Nimb)显著正相关。单位微生物生物量的碳矿化速率(qCO2)随着C:Nmic的增加而降低,而单位微生物生物量的氮矿化速率(qAN)随着C:Nmic的增加而增加。C:NimbqCO2正相关,与qAN负相关。以上结果表明,微生物会通过改变自身碳氮化学计量、调整碳氮之间相对矿化速率,以适应土地利用变化导致的土壤碳氮及其化学计量的变异性,以满足自身生长和代谢的碳氮需求平衡。
Abstract:
Different land-|uses lead to significant changes in soil carbon and nitrogen concentrations and their stoichiometry. However, how soil microbial stoichiometry and associated mineralization of soil carbon and nitrogen respond to such changes caused by land-uses is not conclusive. The present study investigated the soil organic carbon (Csoil), total nitrogen (Nsoil), soil microbial biomass carbon and nitrogen (Cmic and Nmic), and carbon and nitrogen mineralization rates (Cmin and Nmin) of the topsoil (0-5 cm depth) under four land-uses (natural broad-leaved deciduous forest, Pinus koraiensis plantation, grassland, and cropland) in the Maoershan Forest Ecosystem Research Station, Northeast China (45°20'N, 127°30'E). Our objectives were to (1) examine the effects of land-uses on Csoil, Nsoil, Cmic, Nmic, Cmin, Nmin, and their stoichiometric ratios; and (2) explore the carbon-nitrogen interactions among soil-microbe-mineralization in order to mechanistically understand microbial responses and adaptation to resource stoichiometry. The results showed that the contents of Csoil, Nsoil, Cmic, Nmic, and Cmin decreased in the following order:natural forest>plantation>grassland>cropland; whereas the natural forest and grassland had significantly higher Nmin than the plantation and cropland. Land-uses significantly affected soil and microbial biomass carbon to nitrogen ratios (C:Nsoil and C:Nmic). The cropland had the greatest C:Nsoil and C:Nmic among the four land-|uses. The analysis of the pooled data across the four land-|uses showed that the ratio of carbon to nitrogen mineralization rates was correlated negatively with C:Nmic, but positively with the stoichiometric imbalance between microbes and their soil resources (i.e., C:Nsoil divided by C:Nmic, C:Nimb). The carbon mineralization rate per unit microbial biomass carbon (qCO2) decreased with increasing C:Nmic, whereas the nitrogen mineralization rate per unit microbial biomass nitrogen (qAN) increased with increasing C:Nmic. The C:Nimb was correlated positively with the qCO2, but negatively with the qAN. Our study suggests that soil microbes may adapt to changes in soil stoichiometry induced by land-uses for the requirements of carbon and nitrogen for their growth and metabolism by adjusting their biomass stoichiometry and carbon to nitrogen mineralization rates.
HTML 查看全文   查看/发表评论  下载PDF阅读器

您是本站第 55335419 位访问者

Copyright © 2005-2019   京ICP备06018880号
地址:北京海淀区双清路18号
  邮编:100085    电话:010-62941099
  E-mail : shengtaixuebao@rcees.ac.cn
本系统由北京勤云科技发展有限公司提供技术支持